- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Albash, Tameem (1)
-
Cincio, Lukasz (1)
-
Côté, Jeremy (1)
-
Jonsson, Matías (1)
-
Larocca, Martín (1)
-
Sauvage, Frédéric (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Quantum annealing (QA) is a continuous-time heuristic quantum algorithm for solving or approximately solving classical optimization problems. The algorithm uses a schedule to interpolate between a driver Hamiltonian with an easy-to-prepare ground state and a problem Hamiltonian whose ground state encodes solutions to an optimization problem. The standard implementation relies on the evolution being adiabatic: keeping the system in the instantaneous ground state with high probability and requiring a time scale inversely related to the minimum energy gap between the instantaneous ground and excited states. However, adiabatic evolution can lead to evolution times that scale exponentially with the system size, even for computationally simple problems. Here, we study whether non-adiabatic evolutions with optimized annealing schedules can bypass this exponential slowdown for one such class of problems called the frustrated ring model. For sufficiently optimized annealing schedules and system sizes of up to 39 qubits, we provide numerical evidence that we can avoid the exponential slowdown. Our work highlights the potential of highly-controllable QA to circumvent bottlenecks associated with the standard implementation of QA.more » « less
An official website of the United States government
